★ Pass on Your First TRY ★ 100% Money Back Guarantee ★ Realistic Practice Exam Questions

Free Instant Download NEW 300-135 Exam Dumps (PDF & VCE):
Available on: https://www.certleader.com/300-135-dumps.html


It is impossible to pass Cisco 300-135 exam without any help in the short term. Come to Ucertify soon and find the most advanced, correct and guaranteed Cisco 300-135 practice questions. You will get a surprising result by our Most recent Troubleshooting and Maintaining Cisco IP Networks (TSHOOT) practice guides.

2021 Oct tshoot 300-135:

Q31. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. R1 

B. R2 

C. R3 

D. R4 

E. DSW1 

F. DSW2 

G. ASW1 

H. ASW2 

Answer: G 

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on switch ASW1. 


Q32. - (Topic 16) 

The implementations group has been using the test bed to do a ‘proof-of-concept'. After several changes to the network addressing, routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2(2026::102:1). 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to fault condition? 

A. Under the interface Serial 0/0/0.23 configuration enter the ipv6 ospf 6 area 0 command. 

B. Under the interface Serial0/0/0.12 configuration enter the ipv6 ospf 6 area 12 command. 

C. Under ipv6 router ospf 6 configuration enter the network 2026::1:/122 area 0 command. 

D. Under ipv6 router ospf 6 configuration enter no passive-interface default command. 

Answer: A 

Explanation: 

On R2, IPV6 OSPF routing, configuration is required to add ipv6 ospf 6 area 0 under interface serial 0/0/0.23 


Q33. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer: A Explanation: 

On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 


Q34. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

What is the solution to the fault condition?

A. Under the interface Tunnel34 configuration delete the tunnel mode ipv6 command.

B. Under the interface Serial0/0/0.34 configuration enter the ipv6 address 2026::34:1/122 command.

C. Under the interface Tunnel34 configuration enter the ip address unnumbered Serial0/0/0.34 command.

D. Under the interface Tunnel34 configuration delete the tunnel source Serial0/0/0.34 command and enter the tunnel source 2026::34:1/122 command.

Answer: A

Explanation:

As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE. We need to remove the "tunnel mode ipv6" command under interface Tunnel34


Q35. - (Topic 19) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

On which device is the fault condition located?

A. R1

B. R2

C. R3

D. R4

E. DSW1

F. DSW2

G. ASW1

H. ASW2

Answer: B

Explanation:

Start to troubleshoot this by pinging the loopback IPv6 address of DSW2 (2026::102:1). This can be pinged from DSW1, R4, and R3, which leads us to believe that the issue is with R2. Going further, we can see that R2 only has an IPV6 OSPF neighbor of R1, not R3:


We can then see that OSPFv3 has not been enabled on the interface to R3:


So the problem is with R2, related to IPV6 Routing, and the fix is to enable the "ipv6 ospf 6 area 0" command under the serial 0/0/0.23 interface.


300-135 exam answers

Refresh tshoot 300-135 official cert guide:

Q36. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the BGP process, enter the bgp redistribute-internal command. 

B. Under the BGP process, bgp confederation identifier 65001command. 

C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number. 

D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command. 

Answer: D 

Explanation: 

On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 


Topic 10, Ticket 5 : NAT ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced 

during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 



Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

Sh ip bgp summary ----- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241) 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1 

. Check for running config. i.e sh run for interface serial 0/0/1.. 



From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to 

. As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its should be checked further for running config of interface for stopping 

. Change required: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 


Q37. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

The fault condition is related to which technology?

A. NTP

B. IPv4 OSPF Routing

C. IPv6 OSPF Routing

D. IPV4 and IPV6 Interoperability

E. IPv4 layer 3 security

Answer: D

Explanation:

Answer: D

As explained earlier, the problem is with route misconfigured tunnel modes on R3. R3 is using tunnel mode ipv6, while R4 is using the default of GRE.


Q38. - (Topic 7) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to switch technology? 

A. NTP 

B. Switch-to-Switch Connectivity 

C. Loop Prevention 

D. Access Vlans 

E. VLAN ACL Port ACL 

F. Switch Virtual Interface 

G. Port Security 

Answer: D 

Explanation: 

The problem here is that VLAN 10 is not configured on the proper interfaces on 

switch ASW1. 


Topic 8, Ticket 3 : OSPF Authentication 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own 

issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

===================================================================== ========== 



Client is unable to ping IP 209.65.200.241 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2 but not from R1 


. Check for neighborship of ospf sh ip ospf nei ----- Only one neighborship is forming with R2 & i.e. with R3 Since R2 is connected to R1 & R3 with routing protocol ospf than there should be 2 neighbors seen but only one is seen 

. Need to check running config of R2 & R3 for interface 

Sh run -------------------------- Interface Serial0/0/0/0.12 on R2 


Sh run -------------------------- Interface Serial0/0/0/0 on R1 

. Change required: On R1, for IPV4 authentication of OSPF command is missing and required to configure------ ip ospf authentication message-digest 


Q39. - (Topic 1)

Which statement is true about an IPsec/GRE tunnel?

A. The GRE tunnel source and destination addresses are specified within the IPsec transform set.

B. An IPsec/GRE tunnel must use IPsec tunnel mode.

C. GRE encapsulation occurs before the IPsec encryption process.

D. Crypto map ACL is not needed to match which traffic will be protected.

Answer: C


Topic 2, Troubleshooting VTP 

7. - (Topic 2) 

A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems. 






PC2 in VLAN 200 is unable to ping the gateway address 172.16.200.1; identify the issue. 

A. VTP domain name mismatch on SW4 

B. VLAN 200 not configured on SW1 

C. VLAN 200 not configured on SW2 

D. VLAN 200 not configured on SW4 

Answer: C 

Explanation: 

By looking at the configuration for SW2, we see that it is missing VLAN 200, and the "switchport access vlan 200" command is missing under interface eth 0/0: 


\\psf\Home\.Trash\Screen Shot 2014-10-18 at 9.56.12 PM.png 


Q40. - (Topic 17) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened DSW1 will not become the active router for HSRP group 10. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

What is the solution to the fault condition? 

A. Under the interface vlan 10 configuration enter standby 10 preempt command. 

B. Under the track 1 object configuration delete the threshold metric up 1 down 2 command and enter the threshold metric up 61 down 62 command. 

C. Under the track 10 object configuration delete the threshold metric up 61 down 62 command and enter the threshold metric up 1 down 2 command. 

D. Under the interface vlan 10 configuration delete the standby 10 track1 decrement 60 command and enter the standby 10 track 10 decrement 60 command. 

Answer: D 

Explanation: 

On DSW1, related to HSRP, under VLAN 10 change the given track 1 command to instead use the track 10 command.