★ Pass on Your First TRY ★ 100% Money Back Guarantee ★ Realistic Practice Exam Questions
Free Instant Download NEW 300-101 Exam Dumps (PDF & VCE):
Available on:
https://www.certleader.com/300-101-dumps.html
It is more faster and easier to pass the Cisco 300-101 exam by using Virtual Cisco Implementing Cisco IP Routing questuins and answers. Immediate access to the Rebirth 300-101 Exam and find the same core area 300-101 questions with professionally verified answers, then PASS your exam with a high score now.
2021 Apr 300-101 download
Q51. An organization decides to implement NetFlow on its network to monitor the fluctuation of traffic that is disrupting core services. After reviewing the output of NetFlow, the network engineer is unable to see OUT traffic on the interfaces. What can you determine based on this information?
A. Cisco Express Forwarding has not been configured globally.
B. NetFlow output has been filtered by default.
C. Flow Export version 9 is in use.
D. The command ip flow-capture fragment-offset has been enabled.
Answer: A
Explanation:
We came across a recent issue where a user setup a router for NetFlow export but was unable to see the
OUT traffic for the interfaces in NetFlow Analyzer. Every NetFlow configuration aspect was checked and
nothing incorrect was found. That is when we noticed the `no ip cef' command on the router. CEF was
enabled at the global level and within seconds, NetFlow Analyzer started showing OUT traffic for the
interfaces. This is why this topic is about Cisco Express Forwarding.
What is switching?
A Router must make decisions about where to forward the packets passing through. This decision-making
process is called "switching". Switching is what a router does when it makes the following decisions:
1.Whether to forward or not forward the packets after checking that the destination for the packet is
reachable.
2.If the destination is reachable, what is the next hop of the router and which interface will the router use to
get to that destination.
What is CEF?
CEF is one of the available switching options for Cisco routers. Based on the routing table, CEF creates its
own table, called the Forwarding Information Base (FIB). The FIB is organized differently than the routing
table and CEF uses the FIB to decide which interface to send traffic from. CEF offers the following
benefits:
1.Better performance than fast-switching (the default) and takes less CPU to perform the same task.
2.When enabled, allows for advanced features like NBAR
3.Overall, CEF can switch traffic faster than route-caching using fast-switching
How to enable CEF?
CEF is disabled by default on all routers except the 7xxx series routers. Enabling and Disabling CEF is
easy. To enable CEF, go into global configuration mode and
enter the CEF command.
Router# config t
Router(config)# ip cef
Router(config)#
To disable CEF, simply use the `no' form of the command, ie. `no ip cef`.
Why CEF Needed when enabling NetFlow ?
CEF is a prerequisite to enable NetFlow on the router interfaces. CEF decides through which interface
traffic is exiting the router. Any NetFlow analyzer product will calculate the OUT traffic for an interface
based on the Destination Interface value present in the NetFlow packets exported from the router. If the
CEF is disabled on the router, the NetFlow packets exported from the router will have "Destination
interface" as "null" and this leads NetFlow Analyzer to show no OUT traffic for the interfaces. Without
enabling the CEF on the router, the NetFlow packets did not mark the destination interfaces and so
NetFlow Analyzer was not able to show the OUT traffic for the interfaces. Reference: https://
blogs.manageengine.com/network-2/netflowanalyzer/2010/05/19/need-for-cef- in-netflow-data-export.html
Q52. After you review the output of the command show ipv6 interface brief, you see that several IPv6 addresses have the 16-bit hexadecimal value of "FFFE" inserted into the address. Based on this information, what do you conclude about these IPv6 addresses?
A. IEEE EUI-64 was implemented when assigning IPv6 addresses on the device.
B. The addresses were misconfigured and will not function as intended.
C. IPv6 addresses containing "FFFE" indicate that the address is reserved for multicast.
D. The IPv6 universal/local flag (bit 7) was flipped.
E. IPv6 unicast forwarding was enabled, but IPv6 Cisco Express Forwarding was disabled.
Answer: A
Explanation:
Extended Unique Identifier (EUI), as per RFC2373, allows a host to assign iteslf a unique 64-
Bit IP Version 6 interface identifier (EUI-64). This feature is a key benefit over IPv4 as it eliminates the
need of manual configuration or DHCP as in the world of IPv4. The IPv6 EUI-64 format address is obtained
through the 48-bit MAC address. The Mac address is first separated into two 24-bits, with one being OUI
(Organizationally Unique Identifier) and the other being NIC specific. The 16-bit 0xFFFE is then inserted
between these two 24-bits to for the 64-bit EUI address. IEEE has chosen FFFE as a reserved value which
can only appear in EUI-64 generated from the an EUI-48 MAC address. Here is an example showing how
a the Mac Address is used to generate EUI.
Next, the seventh bit from the left, or the universal/local (U/L) bit, needs to be inverted. This bit identifies whether this interface identifier is universally or locally administered. If 0, the address is locally
administered and if 1, the address is globally unique. It is worth noticing that in the OUI portion, the globally
unique addresses assigned by the IEEE has always been set to 0 whereas the locally created addresses
has 1 configured. Therefore, when the bit is inverted, it maintains its original scope (global unique address
is still global unique and vice versa). The reason for inverting can be found in RFC4291 section 2.5.1.
Once the above is done, we have a fully functional EUI-64 format address.
Reference: https://
supportforums.cisco.com/document/100566/understanding-ipv6-eui-64-bit- address
Q53. Which Cisco VPN technology uses AAA to implement group policies and authorization and is also used for the XAUTH authentication method?
A. DMVPN
B. Cisco Easy VPN
C. GETVPN
D. GREVPN
Answer: B
Explanation:
Q54. Refer to the following output:
Router#show ip nhrp detail
10.1.1.2/8 via 10.2.1.2, Tunnel1 created 00:00:12, expire 01:59:47
TypE. dynamic, Flags: authoritative unique nat registered used
NBMA address: 10.12.1.2
What does the authoritative flag mean in regards to the NHRP information?
A. It was obtained directly from the next-hop server.
B. Data packets are process switches for this mapping entry.
C. NHRP mapping is for networks that are local to this router.
D. The mapping entry was created in response to an NHRP registration request.
E. The NHRP mapping entry cannot be overwritten.
Answer: A
Explanation:
Show NHRP: Examples
The following is sample output from the show ip nhrp command:
Router# show ip nhrp
10.0.0.2 255.255.255.255, tunnel 100 created 0:00:43 expire 1:59:16 Type: dynamic Flags: authoritative
NBMA address: 10.1111.1111.1111.1111.1111.1111.1111.1111.1111.11 10.0.0.1 255.255.255.255,
Tunnel0 created 0:10:03 expire 1:49:56 Type: static Flags: authoritative NBMA address: 10.1.1.2 The
fields in the sample display are as follows:
The IP address and its network mask in the IP-to-NBMA address cache. The mask is always
255.255.255.255 because Cisco does not support aggregation of NBMA information through NHRP.
The interface type and number and how long ago it was created (hours:minutes:seconds).
The time in which the positive and negative authoritative NBMA address will expire
(hours:minutes:seconds). This value is based on the ip nhrp holdtime
command.
Type of interface:
dynamic--NBMA address was obtained from the NHRP Request packet.
static--NBMA address was statically configured.
Flags:
authoritative--Indicates that the NHRP information was obtained from the Next Hop Server or router that
maintains the NBMA-to-IP address mapping for a particular destination. Reference: http://www.cisco.com/
c/en/us/td/docs/ios/12_4/ip_addr/configuration/guide/hadnhrp.html
Q55. A router receives a routing advertisement for the same prefix and subnet from four different routing protocols. Which advertisement is installed in the routing table?
A. RIP
B. OSPF
C. iBGP
D. EIGRP
Answer: D
Explanation:
Up to date 300-101 free practice exam:
Q56. Refer to the exhibit.
Which statement is true?
A. Traffic from the 172.16.0.0/16 network will be blocked by the ACL.
B. The 10.0.0.0/8 network will not be advertised by Router B because the network statement for the 10.0.0.0/8 network is missing from Router B.
C. The 10.0.0.0/8 network will not be in the routing table on Router B.
D. Users on the 10.0.0.0/8 network can successfully ping users on the 192.168.5.0/24 network, but users on the 192.168.5.0/24 cannot successfully ping users on the 10.0.0.0/8 network.
E. Router B will not advertise the 10.0.0.0/8 network because it is blocked by the ACL.
Answer: E
Explanation:
Q57. What are the three modes of Unicast Reverse Path Forwarding?
A. strict mode, loose mode, and VRF mode
B. strict mode, loose mode, and broadcast mode
C. strict mode, broadcast mode, and VRF mode
D. broadcast mode, loose mode, and VRF mode
Answer: A
Explanation:
Network administrators can use Unicast Reverse Path Forwarding (Unicast RPF) to help limit
the malicious traffic on an enterprise network. This security feature works by enabling a router to verify the
reachability of the source address in packets being forwarded. This capability can limit the appearance of
spoofed addresses on a network. If the source IP address is not valid, the packet is discarded. Unicast
RPF works in one of three different modes: strict mode, loose mode, or VRF mode. Note that not all
network devices support all three modes of operation. Unicast RPF in VRF mode will not be covered in this
document. When administrators use Unicast RPF in strict mode, the packet must be received on the
interface that the router would use to forward the return packet. Unicast RPF configured in strict mode may
drop legitimate traffic that is received on an interface that was not the router's choice for sending return
traffic. Dropping this legitimate traffic could occur when asymmetric routing paths are present in the
network. When administrators use Unicast RPF in loose mode, the source address must appear in the
routing table. Administrators can change this behavior using the allow-default option, which allows the use
of the default route in the source verification process. Additionally, a packet that contains a source address
for which the return route points to the Null 0 interface will be dropped. An access list may also be
specified that permits or denies certain source addresses in Unicast RPF loose mode. Care must be taken
to ensure that the appropriate Unicast RPF mode (loose or strict) is configured during the deployment of
this feature because it can drop legitimate traffic. Although asymmetric traffic flows may be of concern
when deploying this feature, Unicast RPF loose mode is a scalable option for networks that contain
asymmetric routing paths. Reference: http://www.cisco.com/web/about/security/intelligence/unicastrpf.
html
Q58. A network administrator uses IP SLA to measure UDP performance and notices that packets on one router have a higher one-way delay compared to the opposite direction. Which UDP characteristic does this scenario describe?
A. latency
B. starvation
C. connectionless communication
D. nonsequencing unordered packets
E. jitter
Answer: A
Explanation:
Cisco IOS IP SLAs provides a proactive notification feature with an SNMP trap. Each measurement
operation can monitor against a pre-set performance threshold.
Cisco IOS IP SLAs generates an SNMP trap to alert management applications if this threshold is crossed.
Several SNMP traps are available: round trip time, average jitter, one-way latency, jitter, packet loss, MOS, and connectivity tests.
Here is a partial sample output from the IP SLA statistics that can be seen:
router#show ip sla statistics 1
Round Trip Time (RTT) for Index 55
Latest RTT: 1 ms
Latest operation start time: *23:43:31.845 UTC Thu Feb 3 2005 Latest operation return code: OK
RTT Values:
Number Of RTT: 10 RTT Min/Avg/Max: 1/1/1 milliseconds Latency one-way time:
Number of Latency one-way Samples: 0
Source to Destination Latency one way Min/Avg/Max: 0/0/0 milliseconds Destination to Source Latency
one way Min/Avg/Max: 0/0/0 milliseconds
Reference:
http://www.cisco.com/en/US/technologies/tk648/tk362/tk920/technologies_white_paper09186a0
0802d5efe.html
Q59. You have been asked to evaluate how EIGRP is functioning in a customer network.
Traffic from R1 to R61 s Loopback address is load shared between R1-R2-R4-R6 and R1-R3-R5-R6 paths. What is the ratio of traffic over each path?
A. 1:1
B. 1:5
C. 6:8
D. 19:80
Answer: D
Explanation:
Q60. CORRECT TEXT
JS Industries has expanded their business with the addition of their first remote office. The remote office router (R3) was previously configured and all corporate subnets were reachable from R3. JS Industries is interested in using route summarization along with the EIGRP Stub Routing feature to increase network stability while reducing the memory usage and bandwidth utilization to R3. Another network professional was tasked with implementing this solution. However, in the process of configuring EIGRP stub routing connectivity with the remote network devices off of R3 has been lost.
Currently EIGRP is configured on all routers R2, R3, and R4 in the network. Your task is to identify and resolve the cause of connectivity failure with the remote office router R3. Once the issue has been resolved you should complete the task by configuring route summarization only to the remote office router R3.
You have corrected the fault when pings from R2 to the R3 LAN interface are successful, and the R3 IP routing table only contains 2 10.0.0.0 subnets.
Answer: Here are the solution as below:
Explanation:
First we have to figure out why R3 and R4 can not communicate with each other. Use the show running-config command on router R3.
Notice that R3 is configured as a stub receive-only router. The receive-only keyword will restrict the router from sharing any of its routes with any other router in that EIGRP autonomous system. This keyword will also prevent any type of route from being sent. Therefore we will remove this command and replace it with the eigrp stub command:
R3# configure terminal
R3(config)# router eigrp 123
R3(config-router)# no eigrp stub receive-only
R3(config-router)# eigrp stub
R3(config-router)# end
Now R3 will send updates containing its connected and summary routes to other routers. Notice that the eigrp stub command equals to the eigrp stub connected summary because the connected and summary options are enabled by default. Next we will configure router R3 so that it has only 2 subnets of 10.0.0.0 network. Use the show ip route command on R3 to view its routing table:
Because we want the routing table of R3 only have 2 subnets so we have to summary sub-networks at the interface which is connected with R3, the s0/0 interface of R4.
There is one interesting thing about the output of the show ip route shown above: the 10.2.3.0/24, which is a directly connected network of R3. We can’t get rid of it in the routing table no matter what technique we use to summary the networks. Therefore, to make the routing table of R3 has only 2 subnets we have to summary other subnets into one subnet.
In the output if we don’t see the summary line (like 10.0.0.0/8 is a summary…) then we should use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 so that all the ping can work well.
In conclusion, we will use the ip summary-address eigrp 123 10.2.0.0 255.255.0.0 at the interface s0/0 of R4 to summary.
R4> enable
R4# conf t
R4(config)# interface s0/0
R4(config-if)# ip summary-address eigrp 123 10.2.0.0 255.255.0.0
Now we jump back to R3 and use the show ip route command to verify the effect, the output is shown below:
Note: Please notice that the IP addresses and the subnet masks in your real exam might be different so you might use different ones to solve this question. Just for your information, notice that if you use another network than 10.0.0.0/8 to summary, for example, if you use the command ip summary-address eigrp 123 10.2.0.0 255.255.0.0 you will leave a /16 network in the output of the show ip route command.
But in your real exam, if you don’t see the line "10.0.0.0/8 is a summary, Null0" then you can summarize using the network 10.2.0.0/16. This summarization is better because all the pings can work well. Finally don’t forget to use the copy run start command on routers R3 and R4 to save the configurations. R3(config-if)# end R3# copy run start R4(config-if)# end R4# copy run start
If the “copy run start” command doesn’t work then use “write memory.”